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Abstract

In this paper, we describe in detail the computational algorithm used by our parallel multigrid elliptic equation sol-

ver with adaptive mesh refinement. Our code uses truncation error estimates to adaptively refine the grid as part of the

solution process. The presentation includes a discussion of the orders of accuracy that we use for prolongation and

restriction operators to ensure second order accurate results and to minimize computational work. Code tests are pre-

sented that confirm the overall second order accuracy and demonstrate the savings in computational resources provided

by adaptive mesh refinement.

� 2005 Elsevier Inc. All rights reserved.
1. Introduction

Elliptic equations appear throughout engineering, science, and mathematics. Our primary interest is in

elliptic problems that arise in the context of numerical relativity. Currently, the field of numerical relativity

is being driven by rapid progress on the experimental front. There are several ground-based gravitational
wave detectors in operation today, and their sensitivities are quickly approaching a level at which interest-

ing science can be done. There are also plans for a space-based gravitational wave detector, LISA, to be

launched around 2012. The scientific payoff of these instruments will depend largely on our ability to the-

oretically predict and explain the observed signals. For both ground-based and space-based gravitational

wave detectors, the most common and strongest signals are expected to come from colliding black holes.

Thus, much of the numerical relativity community has directed its efforts toward modeling binary black

hole systems.
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When black holes spiral together and collide, they generate gravitational waves. The black hole

‘‘source’’ region has a length scale of GM/c2, where G is Newton�s constant, M is the total mass of

the two black holes, and c is the speed of light. The gravitational waves produced by the source have

a length scale up to �100GM/c2. Herein lies one of the challenges of modeling binary black hole sys-

tems with finite difference methods. The source region requires grid zones of size [0.01GM/c2 to accu-
rately capture the details of the black holes� interaction, while the extent of the grid needs to be several

hundred GM/c2 to accurately capture the details of the gravitational wave signal. Many research groups

in numerical relativity are starting to use adaptive mesh refinement (AMR) techniques to deal with this

discrepancy in length scales [1–11]. With AMR the grid resolution is allowed to vary across the com-

putational domain so that computational resources can be concentrated where they are most needed.

For the binary black hole problem, we need a high resolution region to cover the small-scale detail

of the source, but the gravitational waves far from the source can be modeled with sufficient accuracy

using a much lower resolution grid.
Elliptic equations occur in several contexts in numerical relativity. Einstein�s theory of gravity is a system

of partial differential equations consisting of four constraint equations and a set of evolution equations (see

for example [12]). The constraint equations restrict the data at each time step so in particular the initial data

cannot be chosen freely. With suitable assumptions about the nature of the initial data, the constraint equa-

tions can be written as an elliptic system [13].

Having solved the constraints for the initial data, those data are evolved forward in time by the evolution

equations. At an analytical level, the evolution equations guarantee that the constraint equations will con-

tinue to be satisfied. However, in numerical modeling, numerical errors will introduce violations of the con-
straints. These violations can be disastrous because the evolution equations admit unphysical, constraint

violating solutions that grow exponentially [14–17]. One possible strategy for preventing this disaster is

to impose the constraints during the evolution, which means solving the elliptic constraint equations after

each time step [18–20].

Elliptic equations also arise in numerical relativity when one is faced with choosing a coordinate system.

In Einstein�s theory the coordinate system must be chosen dynamically as the gravitational field evolves for-

ward in time. The choice of coordinate system can have a dramatic effect on the performance of a numerical

relativity code. Researchers have developed many different strategies for choosing a coordinate system.
Some of these strategies require the solution of elliptic, parabolic or hyperbolic equations, and some involve

algebraic conditions. Some researchers feel that the elliptic conditions might be best, but the cost of solving

elliptic equations at each time step has made the other choices more practical and more popular.

In the numerical relativity community we need the capability of solving elliptic equations quickly on

adaptive, non-uniform grids. No doubt this same need exists in other areas of science and applied

mathematics.

Multigrid methods originated in the 1960s with the work of Fedorenko and Bakhvalov [21–23]. They

were further developed in the 1970s by Brandt [24,25], and are now the preferred methods for solving ellip-
tic partial differential equations. The advantage of multigrid is its speed – multigrid algorithms only require

order N3 operations to solve an elliptic equation, where N3 is the number of grid points. In this paper, we

describe our code, AMRMG, which solves nonlinear elliptic equations using multigrid methods with adap-

tive mesh refinement. The idea of combining multigrid with AMR is not new [24–27], although there are a

number of features of our code that distinguish it from the discussions we have seen. In particular,

AMRMG uses cell-centered data, as opposed to node centered data. AMRMG uses the full approximation

storage (FAS) algorithm, and therefore is not restricted to linear elliptic equations. AMRMG uses the

Paramesh package to implement parallelization and to organize the multigrid structure [28,29]. In [30],
we used AMRMG to solve numerically for distorted black hole initial data.

AMRMG is currently set up to solve second order equations that are semi-linear (the second order deriv-

ative terms are linear in the unknown field). The FAS scheme is applicable for fully nonlinear equations as
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well, and in principle AMRMG can be modified to solve any nonlinear equation. The equations of current

interest for us are semi-linear, therefore we have not tested AMRMG on any fully nonlinear systems.

In this paper, we describe the algorithm behind AMRMG in detail. In Section 2, we present the overall

conceptual framework behind our code, and discuss some of the choices made in its development. Section 3

is devoted to a discussion of guard cell filling, which determines the coupling between fine and coarse grid
regions. In Section 4, we review the FAS algorithm and in Section 5, we discuss in detail the restriction and

prolongation operators used by AMRMG. In Section 6, we describe the calculation of the relative trunca-

tion error and how it is used to control the grid structure. Section 7 contains the results of a number of code

tests involving the calculation of initial data for numerical relativity.
2. Multigrid with AMR

The simplest technique for solving an elliptic problem is relaxation. The equation (or system of equa-

tions) is written in discrete form as fi(/) = gi(/), where i labels the grid points and /i denotes the numerical

solution. A ‘‘relaxation sweep’’ consists of refining the approximate solution /old
i by solving the system

fi(/
new) = gi(/

old) for /new
i . [In the simplest case f is the identity and relaxation is written as

/new
i ¼ gið/oldÞ.] The success of the relaxation method depends on how the finite difference equations are

split into a left-hand side fi(/) and a right-hand side gi(/). When relaxation does work, it is slow to con-

verge. In particular the long wavelength features of the solution must slowly ‘‘diffuse’’ across the grid with

successive relaxation sweeps.
To solve a problem with multigrid methods we introduce a hierarchy of grids with different resolutions.

For the moment, consider the case in which we seek the numerical solution of an elliptic equation on a uni-

form grid of size N3 that covers the entire computational domain. We introduce grids of size (N/2)3, (N/4)3,

etc., each covering the computational domain. On each grid the finite difference equation, or an associated

equation, is solved by relaxation. The equations to be solved on each multigrid level are discussed in Section

4. For now, we simply note that the equations are chosen so that relaxation on the coarse grids quickly

captures the long wavelength features of the solution. Relaxation on the fine grids captures the short wave-

length features. The grids in the multigrid hierarchy communicate with one another through restriction and
prolongation operators. Restriction takes data on a grid in the hierarchy and restricts it to the next coarsest

grid. Prolongation takes data on a grid in the hierarchy and interpolates it onto the next finest grid. Dif-

ferent multigrid algorithms use different sequences of grids in solving elliptic problems, but the most basic

sequence is the V-cycle. In a multigrid V-cycle one starts with the finest grid, steps down the grid hierarchy

to the coarsest grid, then steps back up to the finest grid.

In the context of a time-dependent problem, adaptive mesh refinement (AMR) means that the grid struc-

ture adapts in time to meet the changing demands as the fields evolve. In the context of an elliptic (time-

independent) problem, AMR means that the grid structure is determined adaptively, as part of the solution
process, in an attempt to minimize numerical errors.

We use the Paramesh package to organize the grid structure for our code. Paramesh covers the com-

putational domain with blocks of data of varying spatial resolution. These blocks form a tree data-

structure. They are logically Cartesian, consisting of a fixed number of cells. We typically use 83 cells

for each block. Fig. 1 shows an example one-dimensional grid. The numbers in that figure indicate the

resolution level, and the letters denote blocks. At the base of the tree structure is a single block, labeled

1A. Paramesh refines blocks by bisection in each coordinate direction. In this one-dimensional example

block 1A is refined into two blocks, 2A and 2B. Since each data block contains the same number of
cells, level 2 has twice the resolution as level 1. Using Paramesh terminology, block 1A is the ‘‘parent’’

of blocks 2A and 2B, and blocks 2A and 2B are the ‘‘children’’ of block 1A. In Fig. 1 Paramesh has
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Fig. 1. Example of a one-dimensional grid structure. The numbers on the left denote the resolution level, and the letters label blocks of

data.
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also refined blocks 2A and 2B to create blocks 3A, 3B, 3C and 3D. Further refinements yield the non-

uniform grid shown in the figure. Paramesh always creates grid structures in which adjacent blocks�
refinement levels differ by no more than one.

Our first task is to decide how to carry out a basic multigrid V-cycle on a non-uniform grid structure.
There are two natural approaches. The first approach is the fast adaptive composite grid method (FAC)

developed by McCormick [31]. In this approach, the relaxation sweeps extend across the entire computa-

tional domain, and one defines the succession of multigrid levels by restricting the highest resolution sub-

grid to the next lower resolution. As an example based on Fig. 1, we let the top multigrid level consist of

blocks 4A–5A–5B–5C–5D–4D–3C–4E–4F. After carrying out a series of relaxation sweeps on this non–

uniform grid, we step down the multigrid V-cycle by restricting the data in blocks 5A–5B–5C–5D to res-

olution level 4. Thus, the next multigrid level is defined by blocks 4A–4B–4C–4D–3C–4E–4F. After relaxing

on this grid, we restrict the resolution level 4 blocks to resolution level 3. This defines the next multigrid
level as 3A–3B–3C–3D. We can continue in this fashion to define a complete hierarchy of multigrid levels,

each covering the entire computational domain.

The second approach, the one we use for AMRMG, is to define the grids in the multigrid hierarchy to

coincide with the different resolution levels. This is the original multi-level adaptive technique (MLAT) pro-

posed by Brandt [25,32]. As an example based on Fig. 1, the top multigrid level consists of all blocks at

resolution level 5, namely, 5A–5B–5C–5D. After carrying out a series of relaxation sweeps on the level 5

blocks, we restrict that data to level 4. Then the next multigrid level consists of blocks 4A–4B–4C–4D–

4E–4F. After relaxing on these blocks we restrict the resolution level 4 data to resolution level 3. Then
the next multigrid level consists of the level 3 blocks 3A–3B–3C–3D. We continue in this fashion to define

a complete multigrid hierarchy.

We have built and tested a one-dimensional multigrid code based on the FAC approach. That code

works quite well. However, the MLAT approach appeared to us to be more straightforward to implement

in a three-dimensional code based on Paramesh. For this reason AMRMG defines the levels in the multi-

grid hierarchy by resolution. Apart from the issue of implementation, the MLAT approach has an advan-

tage in solving problems in which only a small region of the computational domain requires high

resolution. With the FAC approach, in which relaxation always extends across the entire computational
domain, a lot of unnecessary computational effort can be expended on relaxation in the low resolution re-

gions. On the other hand, the FAC approach has the advantage over MLAT in maintaining a tighter cou-

pling between regions of different resolutions. For example, for the grid shown in Fig. 1, the data in blocks

4A and 4D effectively provide boundary conditions for relaxation in blocks 5A through 5D. With FAC,
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that boundary information is updated between every relaxation sweep across the top multigrid level (4A–

5A–5B–5C–5D–4D–3C–4E–4F). With MLAT, in which the top multigrid level consists of blocks 5A–5B–

5C–5D, the boundary information is only updated once each V-cycle.
3. Guard cell filling

AMRMG uses cell centered data. When we apply the relaxation formula fi(/
new) = gi(/

old) to a cell adja-

cent to a block face, the finite difference stencil extends beyond the block. Paramesh uses layers of guard

cells surrounding each block to hold data from beyond the block boundaries. In Fig. 2, we show a portion

of a one-dimensional grid with a fine grid block on the left and a coarse grid block on the right. The grid

points are labeled by their distance from the block interface in units of the fine grid cell size Dx. Thus, the
fine grid points are �1/2, �3/2, etc., and the coarse grid points are 1, 3, etc. The gray circle at location +1/2
is a guard cell for the fine grid block, and the gray square at location �1 is a guard cell for the coarse grid

block. Guard cell values are obtained by interpolation from surrounding interior data points. We want to

consider how errors in guard cell filling affect the accuracy of the solution.

Consider the simple example of the Poisson equation in one-dimension, o2//ox2 = q. For the moment let

us consider a uniform numerical grid with grid spacing Dx. With standard second order centered differenc-

ing, the discrete Poisson equation is
Fig. 2.

on the
/iþ1 � 2/i þ /i�1

Dx2
þ OðDx2Þ ¼ qi; ð1Þ
where i labels the grid points. The term OðDx2Þ is the truncation error obtained from discretization of the

second derivative. We can rewrite Eq. (1) in a form appropriate for relaxation as
/new
i ¼ 1

2
ð/old

iþ1 þ /old
i�1Þ �

1

2
Dx2qi þ OðDx4Þ. ð2Þ
When we apply this relaxation formula, the truncation error dictates that the numerical solution will have

errors of order Dx2. That is, the numerical solution will be second order accurate.

For the non-uniform grid of Fig. 2, the discrete equation (1) and the relaxation formula (2) apply as

shown in the fine grid region, where i = �1/2, �3/2, etc. For relaxation at the grid point i = �1/2, we need

the guard cell value /1/2. We want the guard cell value to be sufficiently accurate that it does not spoil the

second order convergence of the solution. It is clear from these equations that errors of order Dx4 in the
value of /1/2 can be absorbed into the truncation error already present. Thus, we expect the numerical solu-

tion to be second order convergent if the guard cells are filled to fourth (or higher) order accuracy.

As far as we know, fourth order guard cell filling is sufficient to produce a second order accurate solution

for second order partial differential equations discretized on a non-uniform grid with standard second order

differencing. Fourth order guard cell filling, however, is not a necessary condition. There is a ‘‘rule of

thumb’’ in the computational mathematics community that can be summarized as follows [32,33,26]: errors

of order Dxp that occur on a subspace of dimension m in a space of dimension n will often contribute to the

solution like errors of order Dxp+n�m from the bulk. Thus, we anticipate that errors of order Dx3 in guard
35/ 3/ /2 1

A portion of a one-dimensional grid, showing three cells from a fine grid block on the left and two cells from a coarse grid block

right.
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cell filling, which occur on the two-dimensional block boundaries in the three-dimensional space, will con-

tribute like errors of order Dx4 from the bulk and will not spoil the second order convergence of our code.

For the problems that we have studied this is indeed the case.

The guard cell filling scheme that we use was written by Kevin Olson as part of the standard Para-

mesh package. The process of filling the guard cells of a fine grid block that is adjacent to a coarse grid
block proceeds in two steps. The first step is a restriction operation in which cells from the interior of

the fine grid block are used to fill the interior cells of the underlying ‘‘parent’’ block. The restriction

operation is depicted for the case of two spatial dimensions in the left panel of Fig. 3. The restriction

proceeds as a succession of one-dimensional quadratic interpolations, and is accurate to third order in

the grid spacing. Note that the fine grid stencil used for this step (nine black circles in the figure) can-

not be centered on the parent cell (gray square). In each dimension the stencil includes two fine grid

cells on one side of the parent cell and one fine grid cell on the other. The stencil is always positioned

so that its center is shifted toward the center of the block (assumed in the figure to be toward the
upper left). This ensures that only interior fine grid points, and no fine grid guard cells, are used in

this first step.

For the second step, the fine grid guard cells are filled by prolongation from the parent grid. Before the

prolongation, the parent block gets its own guard cells (black squares in the right panel of Fig. 3) from the

neighboring block at the same refinement level. The stencil used in the prolongation operation is shown in

the right panel of Fig. 3. The prolongation operation proceeds as a succession of one-dimensional quadratic

interpolations, and is third order accurate. In this case, the parent grid stencil includes a layer of guard cells

(black squares), as well as its own interior grid points (gray squares). At the end of this second step the fine
grid guard cells are filled to third order accuracy.

When Paramesh fills the guard cells of a parent block, it also fills the guard cells of the parent�s
neighbor at the same refinement level. In Fig. 3, the parent�s neighbor is the coarse grid block on

the right side of the refinement boundary. Since we are using the second approach to multigrid outlined

in Section 2, we do not relax in the parent�s neighbor block until we step down the multigrid hierarchy.

Thus, the guard cell values assigned to a parent�s neighbor by the Paramesh guard cell filling routine

are not used by AMRMG.
Fig. 3. The picture on the left shows the first step in guard cell filling, in which one of the parent grid cells (gray square) is filled using

quadratic interpolation across nine interior fine grid cells (black circles). The other parent grid cells are filled using corresponding

stencils of nine interior fine grid cells. The picture on the right shows the second step in which two fine grid guard cells (gray circles) are

filled using quadratic interpolation across nine parent grid values (squares). These parent grid values include one layer of guard cells

(black squares) obtained from the parent�s neighbor on the right side of the interface, and two layers of interior cells (gray squares).
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4. The FAS algorithm

AMRMG uses the full approximation storage (FAS) multigrid algorithm [25,34]. In this section, we pro-

vide a brief overview of FAS, and discuss the order of restriction and prolongation operators used for step-

ping down and up the multigrid hierarchy.
We are interested in the nonlinear elliptic differential equation E(Æ) = q, where E is a (possibly) nonlinear

elliptic operator. To avoid confusion with notation for exact and approximate solutions, we use a centered

‘‘dot’’ as a placeholder for the unknown function. Now consider a simple multigrid hierarchy consisting of

two grids, a fine grid at level 2 and a coarse grid at level 1. The differential equation E(Æ) = q, discretized on

the finest level, becomes E2(Æ) = q2. Here, the subscripts denote the multigrid level. What we seek is a solu-

tion of the difference equations E2(Æ) = q2.
The basic V-cycle for the FAS algorithm consists of the following steps.

Step 1. Guess a trial solution ~/2 (for example, ~/2 ¼ 0) and carry out some number of relaxation sweeps on

the equation E2(Æ) = q2 to obtain an approximate solution /2.

Step 2. Construct the coarse grid source
q1 ¼ Rðq2 � E2ð/2ÞÞ þ E1ðR/2Þ. ð3Þ

Here, R denotes the restriction of data from multigrid level 2 to level 1. Also, E1 denotes the dis-

cretization of the elliptic operator E on the coarse grid 1. Loosely speaking, the term �RðE2ð/2ÞÞ
removes the predominantly short wavelength part of the source that the fine grid has already cap-

tured in Step 1. The term E1ðR/2Þ returns the long wavelength part of the source that was removed

by subtracting RðE2ð/2ÞÞ.

Step 3. Start with the trial solution ~/1 ¼ R/2 and carry out some number of relaxation sweeps on the

equation E1(Æ) = q1 to obtain an approximate solution /1. Alternatively, if possible, solve

E1(Æ) = q1 exactly for /1.

Step 4. Construct the trial solution
~/2 ¼ /2 þPð�R/2 þ /1Þ. ð4Þ
Here, P denotes the prolongation of data from multigrid level 1 to level 2. Loosely speaking, the

term Pð�R/2 þ /1Þ removes the long wavelength part of /2 and replaces it with /1, which con-

tains primarily long wavelength information due to the construction of q1.

Step 5. Start with the trial solution ~/2 from Step 4 and carry out some number of relaxation sweeps on the

equation E2(Æ) = q2 to obtain an improved approximate solution /2.

For successive V-cycles the approximate solution /2 from Step 5 is used as the trial solution ~/2 in Step 1.

The FAS V-cycle can be generalized in an obvious way to any number of multigrid levels.

At the bottom of each V-cycle Step 3 instructs us to find an exact or approximate solution of the

equation E1(Æ) = q1. The subscript �1� denotes the coarsest level in the multigrid hierarchy. It is impor-

tant for the performance of any multigrid code to solve this equation accurately. Solving the level 1

equation can be a potential bottleneck for our code because Paramesh places the data for each block

on a single processor. When the algorithm is at the bottom of a V-cycle, only a single processor is

active.
The simplest strategy for solving the level 1 equation E1(Æ) = q1 is to carry out relaxation sweeps, just as

we do for the higher multigrid levels. Typically our coarsest multigrid level is a single data block with 83

interior grid points. We find that with Robin boundary conditions it typically takes about one hundred

relaxation sweeps to solve the level 1 equation to sufficiently high accuracy. With fewer sweeps at this level

the code can require more V-cycles to solve the elliptic problem.
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The concern is that the solution of the level 1 equation, requiring �100 sweeps with only one processor

active, can dominate the run time for the code. However, it turns out that the run time for AMRMG is

dominated by communications calls made in Paramesh. Currently AMRMG uses version 3.0 of Paramesh,

which is one of the first versions of Paramesh to run under MPI. More recent versions are better optimized,

but we have not switched to the latest version of Paramesh because of the special modifications that
AMRMG requires.

One way that we have improved the performance of our code is to bypass the communications calls

made by Paramesh when solving the level 1 equation. The data for the level 1 equation always resides

on block #1 on processor #1, so no communication among processors is needed. We have bypassed the

Paramesh guard cell filling routine by writing a routine that directly fills the guard cells of this block using

the outer boundary conditions.

We are primarily interested in solving elliptic problems that are semi-linear, that is, problems in which

the second order derivative terms are linear in the unknown field. For these problems the equation to be
solved at the bottom of each V-cycle takes the form D1/1 = q1, where D1 is the Laplacian operator (not

necessarily on flat space with Cartesian coordinates) discretized on multigrid level 1. In these cases we have

an alternative to relaxation, namely, direct matrix inversion: /1 = (D1)
�1q1. We have implemented matrix

inversion for level 1 using the direct Gaussian elimination routine from the LAPACK libraries [35]. With

Robin boundary conditions, we must solve the level 1 equation for / values in the guard cells as well as

interior cells. With 83 interior grid points and one layer of guard cells, we have 103 values to determine

at the bottom of each V-cycle. Therefore the matrix to be inverted has dimensions 1000 · 1000. Our tests

show that it takes longer (by a factor of �10) to solve the level 1 equation by direct matrix inversion than by
relaxation, assuming the Paramesh communications calls have been bypassed. However, in either case the

time required to solve the level 1 equation is a small fraction of the overall runtime for the code. Thus, we

prefer to use the direct matrix inversion whenever possible because, with matrix inversion, the accuracy of

the level 1 solution is insured.
5. Restriction and prolongation

As described in Section 3, guard cells are filled with a combination of restriction and prolongation oper-

ations. The operators used for guard cell filling are third order accurate, and we denote these by ð3ÞR for

restriction and ð3ÞP for prolongation. What order restriction and prolongation operators do we use for step-

ping down and up the multigrid hierarchy? The answer is that we use a combination of second, third, and

fourth order operators.

The restriction operators in Paramesh are always defined in such a way that only interior cells from the

child blocks are used to fill the interior cells of a parent block. The fine grid stencil is positioned to keep the

coarse grid point as close as possible to the center of the stencil. For the case of second order restriction,
ð2ÞR, the coarse grid point lies at the center of the stencil and gets its value from a succession of linear inter-

polations in each dimension. The case of third order restriction, ð3ÞR, is depicted in the left panel of Fig. 3

and is described in Section 3.

The second, third, and fourth order prolongation operators in Paramesh use a succession of (respec-

tively) linear, quadratic, and cubic interpolations in each dimension to fill the fine grid cells. The prolon-

gation operators use both interior cells and guard cells from a parent block to fill both interior and

guard cells of child blocks. The right panel of Fig. 3 shows the stencil used by the third order prolongation

operator, ð3ÞP, to fill fine grid guard cells on the right side of a fine grid block. This same stencil is used to fill
the first layer of interior cells (the layer of interior fine grid cells adjacent to the block boundary). For the

second and third layer of interior fine grid cells, the stencil is shifted to the left by one coarse grid point.

This pattern of stencil shifting continues across the right half of the fine grid block until the midpoint of
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the block is reached. The stencils used for the left half of the fine grid block are the mirror images of those

used for the right half.

The version of Paramesh currently used by AMRMG allows for second and third order restriction, and

(in principle) arbitrary order prolongation. We have carried out many numerical tests to help us choose

among different combinations of restriction and prolongation operators for stepping down and up the
V-cycles. For all of these tests we used third order restriction and third order prolongation to fill the fine

grid guard cells, as described in Section 3. In our tests we did not consider prolongation orders higher than

four.

As we have presented it, the FAS algorithm uses two restriction operators in Step 2, one restriction oper-

ator in Step 3, and one restriction operator in Step 4. It uses one prolongation operator in Step 4. One could

consider distributing the (assumed linear) restriction operator through the first term in Eq. (3) and treating

the operators independently. Likewise, one could consider distributing prolongation operator through the

second term in Eq. (4) and treating the operators independently. We have not considered the consequences
of splitting these terms. Moreover, AMRMG is written such that the calculation R/2 from Step 2 is used as

the trial solution ~/1 ¼ R/2 for Step 3. Thus, we have not tested the consequences of treating these restric-

tion operators independently. Note that the restriction of the fine grid solution, R/2, appears in Step 4 as

well as Steps 2 and 3. Our tests show that the order of the restriction operator in Step 4 must agree with the

order used for R/2 in Steps 2 and 3. If not, the algorithm will often fail to converge in the sense that the

residual (defined below) will not decrease with successive V-cycles.

The options that remain for restriction and prolongation operators can be expressed by rewriting Eqs.

(3) and (4):
q1 ¼ ðbÞRðq2 � E2ð/2ÞÞ þ E1ððaÞR/2Þ; ð5aÞ

~/2 ¼ /2 þ ðcÞPð�ðaÞR/2 þ /1Þ. ð5bÞ

The letters a, b, and c represent the orders of restriction and prolongation operators that appear in stepping

down and up the V-cycles.

We want to find values for a, b, and c that will give the best performance. In judging the performance of

our code we are looking to see how quickly the residual decreases with successive V-cycles for a fixed non-

uniform mesh. The residual at each point in the computational domain is defined by res = qn � En(/n),

where n is the highest refinement level at that point and /n is the approximate solution. The norm of
the residual is computed as
hresi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
res2

� �r
. ð6Þ
The sum extends over the grid points that cover the computational domain at the highest refinement level.

(In Fig. 2 these would be the interior points of blocks 4A–5A–5B–5C–5D–4D–3C–4E–4F.) The number N

is the total number of such grid points. The norm Æresæ defined above is similar to the usual L2 norm, but

lacks a factor of the cell volume in the ‘‘measure’’ of the sum. That is, the usual L2 norm would be written

as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
P

vres2Þ=V
p

, where v is the volume of each grid cell and V is the total volume of the computational

domain. By omitting the factors of cell volume, the norm Æresæ gives equal weighting to the residuals in each

grid cell, regardless of resolution.
To be specific, we will quote the results for the simple test problem D/ = q, where D is the flat space

Laplacian in Cartesian coordinates. We use the source q = (6 � 9r3)exp(�r3) with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. At

the boundaries we use the Robin condition o
or ½rð/� 1Þ� ¼ 0. The analytic solution to this problem is /

= 1 + (1 � exp(�r3))/r. The numerical solution is computed with a fixed three-level ‘‘box-in-box’’ grid struc-

ture. The highest resolution region has cell size Dx = 0.125 and covers a cubical domain with x, y, and z

ranging from �2 to 2. The medium resolution region has cell size Dx = 0.25. It covers the domain from
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�4 to 4 that is exterior to the high resolution region. The low resolution region has cell size Dx = 0.5. It

covers the domain from �8 to 8 that is exterior to the medium resolution region. It has been our experience

that the generic behavior of AMRMG is fairly well represented by this simple test case.

Our first observation is that with a = 2 the residual gets ‘‘stuck’’ after a few V-cycles. The norm Æresæ
drops to about 10�4, but no further. This happens regardless of the values chosen for b and c. In the limit
of high resolution the truncation error is less than the residual, and the code fails to show second order

convergence of the solution. Thus, we can eliminate the cases in which a = 2 and focus on a = 3.

For a = 3 the norm of the residual decreases with successive V-cycles to values well below the truncation

error. Table 1 shows the average change in the common logarithm of Æresæ for each V-cycle, as a function of

the number of relaxation sweeps at each multigrid level. (This excludes the first multigrid level, at the bottom

of each V-cycle, where we compute the exact solution using matrix inversion.) The best performance is ob-

tained with (a,b,c) = (3,2,4). Note that the norm of the residual becomes insensitive to the number of relax-

ation sweeps as the number of sweeps increases beyond four or five. This is because, as observed in Section 2,
the higher multigrid levels that have lower resolution neighbors can only receive updated boundary informa-

tion once each V-cycle. It does not help to continue relaxation sweeps when the boundary information

is ‘‘old’’ and needs to be updated. We typically use four relaxation sweeps, with red-black Gauss–Seidel

ordering [34].

The results of our testing lead to the following formulas for Steps 2 and 4 of the FAS algorithm:
Table

Averag

Numb

1

2

3

4

5

6

q1 ¼ ð2ÞRðq2 � E2ð/2ÞÞ þ E1ðð3ÞR/2Þ; ð7aÞ

~/2 ¼ /2 þ ð4ÞPð�ð3ÞR/2 þ /1Þ. ð7bÞ

In Step 3, we use the trial solution ~/1 ¼ ð3ÞR/2. Recall that we have not tested the algorithm with order of
restriction greater than 3, or with order of prolongation greater than 4.

Conventional wisdom for determining the orders of restriction and prolongation used for multigrid

transfer operations is that the following should be satisfied:
OR þ OP > OD. ð8Þ

Here, OR, OP, and OD are the orders of restriction, prolongation, and the differential operator, respectively
[36]. For a uniform grid, AMRMG acts as a typical FAS multigrid solver and we achieve acceptable con-

vergence rates as long as the transfer operators satisfy Eq. (8). With a nonuniform grid, the restriction oper-

ator denoted ðaÞR in Eqs. (5) must be third or higher order, at least in the vicinity of mesh refinement

boundaries, for the code to achieve both second order accuracy and optimal convergence rates. This is

not surprising since, with the MLAT approach, data that is restricted from a high resolution region (for

example, data restricted from block 5D to block 4C in Fig. 1) can serve as boundary data for relaxation

in a coarse grid region (block 4D in Fig. 1). With restriction order less than 3, such boundary data yield

truncation errors greater than OðDxÞ when they appear in a discrete second derivative. One of our goals
1

e change in logðhresiÞ per V-cycle
er of sweeps Order of restriction and prolongation operators (a,b,c)

(3,2,2) (3,2,3) (3,2,4) (3,3,2) (3,3,3) (3,3,4)

�0.00 �0.11 �0.16 �0.11 �0.13 �0.33

�0.32 �0.42 �0.50 �0.33 �0.46 �0.56

�0.56 �0.75 �0.77 �0.43 �0.56 �0.69

�0.77 �0.88 �1.13 �0.50 �0.63 �0.74

�0.85 �1.08 �1.21 �0.56 �0.68 �0.79

�0.87 �1.15 �1.23 �0.62 �0.74 �0.83
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for AMRMG is to achieve second order accuracy and good convergence rates with minimal modification of

the existing Paramesh framework. For this reason we have not explored the possibility of using modified

finite difference stencils or modified transfer operators in the vicinity of mesh refinement boundaries.
6. Truncation error and grid control

AMRMG adapts the grid structure to the problem at hand in an attempt to keep the local truncation

error under control. The local truncation error is defined across the computational domain on the grid that

consists of the highest resolution blocks. In Fig. 2 these would be blocks 4A–5A–5B–5C–5D–4D–3C–4E–

4F. Let us refer to this non–uniform grid as grid h. Then the local truncation error is defined by [25]
sh ¼ Ehð/jhÞ � Eð/Þð Þjh; ð9Þ

where / is the exact solution of the continuum equation E(/) = q, and /jh is the projection of / onto grid h.

The discretization of the operator E on grid h is denoted by Eh. In a similar manner, we define the local

truncation error sH on a grid H that is constructed from the parents of grid h blocks. Grid H covers the

computational domain with half the resolution of grid h. The difference between the truncation errors

on grids H and h is
sH �Rsh ¼ EH ð/jHÞ � ðEð/ÞÞjH �REhð/jhÞ þRðEð/ÞÞjh; ð10Þ

where R is a linear operator that restricts data from h to H. Let us assume that R is third order accurate in

the grid spacing. Then the second and fourth terms in Eq. (10) cancel to third order and, to this same order

of accuracy, we find sH �Rsh � EHð/jH Þ �REhð/jhÞ.
The relative local truncation error is defined on grid H by [25]
sHh ¼ EH ðR~/hÞ �RðEhð~/hÞÞ; ð11Þ

where ~/h is the approximate numerical solution from grid h. Again we assume that the restriction operator

is accurate to third order. Since the approximate solution coincides with the exact solution to leading order,
~/h � /jh, we see from Eqs. (10) and (11) that to leading order in the grid spacing the relative truncation

error is related to the local truncation errors by sHh � sH �Rsh. Since we use second order differencing

for our elliptic problems the truncation errors are proportional to the square of the grid spacing. Then

sH � 4Rsh and the relative truncation error is given by sHh � 3Rsh. This relation can be prolonged to the

finest grid h, giving PsHh � 3PRsh. The prolongation operator P, like the restriction operator R, is as-

sumed to be third order accurate in the grid spacing. Then to third order accuracy PR is the identity oper-
ator on h, and we have
sh �
1

3
PsHh . ð12Þ
Together, Eqs. (11) and (12) give
sh �
1

3
ð3ÞPEH ðð3ÞR~/hÞ � Ehð~/hÞ

� �
. ð13Þ
In AMRMG, we use this approximation of the local truncation error to monitor the errors and control the

grid structure. Note that since the truncation error sh is proportional to the square of the grid spacing, the

result (13) is valid to leading order only if third (or higher) order restriction and prolongation operators are

used.
For the test problem described in Section 5, it is straightforward to calculate the analytic truncation

error. Fig. 4 shows a comparison of the analytic truncation error with the computed approximation to



Z
-8 -6 -4 -2 0 2 4 6 8

-0.06

-0.04

-0.02

0

0.02

0.04

Fig. 4. Analytic truncation error and calculated truncation error along the z–axis.

J.D. Brown, L.L. Lowe / Journal of Computational Physics 209 (2005) 582–598 593
the truncation error (13) for that test problem. The analytic truncation error is shown as a thick solid line,

while the calculated truncation error is a thin line with filled circles.

In practice, we start the solution process by specifying a rather coarse grid structure, sometimes uniform
sometimes not. The code V-cycles until the norm of the residual across grid h is less than the norm of the

local truncation error across grid h. We write this as Æresæjh < Æshæjh, where the norm of the truncation error

is defined in the same way as the norm of the residual, Eq. (6). The code usually requires two or three V-

cycles to meet this criterion. We then compute the norm of the truncation error Æshæjb for each block of grid

h. Any block whose norm is greater than some threshold value, Æshæjb > smax, is flagged for refinement. Para-

mesh rebuilds the grid structure and redistributes the data across processors. To obtain a trial solution in

the newly formed blocks we prolong the solution from the parent blocks. The code then carries out V-cycles

on this new grid structure with its new highest-resolution grid h. The entire process repeats until all blocks
satisfy Æshæjb 6 smax and no blocks are flagged for refinement. At this point the code continues to V-cycle

until two conditions are satisfied: (1) the norm of the residual in each block is less than the norm of the

truncation error, Æresæjb < Æshæjb; and (2) the norm of the residual across the entire grid is less than some

threshold value, Æresæjh < resmax. If only the first condition is desired, we simply set resmax to a very large

value.

We have tested the code using second, third, and fourth order prolongation operators for the calculation

of trial solutions in newly formed blocks. We find that none of these operators is consistently better than

the others. The entire adaptive mesh, multigrid algorithm is not very sensitive to the order of prolongation
used in this step. We typically use the fourth order operator ð4ÞP.

The grid control scheme used by AMRMG works well. It insures that the truncation error in each block

across the computational domain is uniformly low, less than smax, and that the errors coming from the

residuals in each block are less than the truncation errors. The value chosen for smax depends on the prob-

lem being solved and the desired degree of accuracy.
7. Code tests

In this section, we present code tests to demonstrate second order convergence and the computa-

tional advantages of AMR. Fig. 5 shows a comparison of errors for the test case described in Section 5.
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The analytical errors on the z-axis are plotted for an AMR grid and for uniform grids with resolutions at

levels 4, 5, 6 and 7. (A grid with resolution level X is created by refining a single block X � 1 times. See Fig.
1.) For the AMR run we start with a uniform level 3 grid and set the refinement criterion for a maximum

truncation error of smax = 0.001 in each block. We also limited the highest resolution to level 7, so the trun-

cation errors in some of the level 7 blocks reached as high as 0.007. The cell size for resolution level 4 is

Dx = 0.25, and the cell size for resolution level 7 is Dx = 0.03125. The grid structure chosen by AMRMG

for the AMR run is shown in Fig. 6.
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Fig. 6. AMR grid structure in the x-y plane. Each square corresponds to a block of data containing 83 computational cells.
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Observe that the errors in each region of the AMR grid are comparable to the errors obtained with a

uniform grid of the same resolution. For example, the errors in the level 7 region of the AMR solution

(the region surrounding the origin) are slightly larger than the errors obtained from the uniform level 7

solution, and smaller than the errors obtained from the uniform level 6 solution. We also note that the sav-

ings in memory with AMR is profound; the AMR grid solution can be calculated on a single processor,
while the level 7 uniform grid solution required 64 processors to handle the memory requirements.

As a test for second order convergence, we consider the initial data for a single black hole. Valid initial

data must satisfy the constraint equations of general relativity. For a vacuum spacetime, the Hamiltonian

and momentum constraints are given, respectively, by
Rþ K2 � KijKij ¼ 0 ð14Þ
and
DjðKij � gijKÞ ¼ 0; ð15Þ
where gij is the physical metric and gij is its inverse. Also, R is the scalar curvature, Kij is the extrinsic cur-

vature with trace K ¼ Ki
i, and Dj is the covariant derivative associated with the spatial metric. These initial

value equations must be rewritten as a well-posed elliptic boundary value problem. The standard techniques

for rewriting the constraint equations are based on the York–Lichnerowicz conformal decomposition [13].

Following this approach, we assume that the physical metric gij is conformally related to a background met-

ric ~gij,
gij ¼ w4~gij; ð16Þ
where w4 is the conformal factor. The physical extrinsic curvature is written as
Kij ¼ w�2 ~Kij. ð17Þ

In terms of these conformal variables, the Hamiltonian and momentum constraints read
8 ~r2
w� w~Rþ w�7 ~Kij

~K
ij � ~K

2
� �

¼ 0; ð18aÞ

~rið~K
ij � ~gij ~KÞ ¼ �4w�1 ~K ~ri

w; ð18bÞ

where ~ri and ~R are the covariant derivative and scalar curvature associated with the background metric ~gij.

The ‘‘puncture method’’ [37] is a way of specifying black hole initial data on R3. The background metric

is chosen to be flat. The momentum constraint (18b) is solved analytically by [38]
~K
ij ¼ 3

2r2
ðP inj þ P jni � ð~gij � ninjÞPknkÞ; ð19Þ
where Pi is the momentum of the black hole and ni is the radial normal vector (in the flat background with

Cartesian coordinates). Note that ~Kij is traceless, ~K ¼ 0. This expression (19) for ~Kij can be generalized to

include an arbitrary number of black holes with spin and momentum, but for simplicity we will use a single

black hole with no spin for our test case. To complete the specification of initial data, we must solve the

Hamiltonian constraint (18a) for the conformal factor w. With the puncture method, the solution w is split

into a known singular term and a nonsingular term u:
w ¼ uþ m
2j~rj . ð20Þ
Here, m is the ‘‘bare mass’’ of the black hole and j~rj is the coordinate distance from the origin. With the

puncture method splitting of the conformal factor, the Hamiltonian constraint becomes
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r2uþ bð1þ auÞ�7 ¼ 0; ð21Þ

where
b ¼ 1

8
a7 ~K

ij ~Kij and a ¼ 2j~rj
m

. ð22Þ
Eq. (21) is solved for the nonsingular function u on R3 with Robin boundary conditions o
or ½rð/� 1Þ� ¼ 0.

For these tests we use a fixed mesh refinement (FMR) grid with an ‘‘X plus 3’’ (Xp3) structure. The ter-

minology Xp3 means that the grid is composed of 4 refinement regions, with the coarsest part of the grid at

level X and the finest part of the grid at level X + 3. The different levels are nested in a ‘‘box-in-box’’ fash-

ion. The finest level, with resolution X + 3, extends from �2 to 2 in each coordinate direction. The level

with resolution X + 2 covers the domain between �4 and 4, excluding the finest level. The level with reso-

lution X + 1 covers the domain between �8 and 8 excluding the finer levels. The coarsest level, with reso-
lution X, covers the domain between �16 and 16 excluding the finer levels.

For our test case we have chosen m = 1 and Pi = (0,0,1). We solve Eq. (21) using the series of FMR grids

3p3, 4p3, 5p3, 6p3, and 7p3. Each successive FMR grid has the same boundaries and double the resolution

of the previous grid. Fig. 7 shows a contour plot of the solution u in the y–z plane, obtained with the 6p3

grid.

Figs. 8 and 9 show the results of a three–point convergence test for data along the z axis. This data passes

through the puncture (at the origin) where the solution u and its derivatives are changing most rapidly. The

three–point convergence test is obtained by plotting the difference between solutions on successive FMR
grids, multiplied by an appropriate power of 4. The top (red) curve shown in Figs. 8 and 9 is the difference

between the solution u obtained on the 4p3 grid and the solution obtained on the 3p3 grid. The next curve is

the difference between solutions on FMR grids 5p3 and 4p3, multiplied by 4. The third curve is the differ-

ence between solutions on FMR grids 6p3 and 5p3, multiplied by 16. Finally, the curve that has the most

negative value at the origin in Fig. 9 is the difference between solutions on the FMR grids 7p3 and 6p3,

multiplied by 64. One can see that the curves in Figs. 8 and 9 overlay one another in the limit of high res-

olution. This shows that the errors in AMRMG are second order in the grid spacing.
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Fig. 7. Contour plot of the non-singular part of solution u.



Z

E
rr

o
r

-16 -12 -8 -4 0 4 8 12 16

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

0.0000

Fig. 8. Three point convergence test of puncture data.

Z

E
rr

or

-0.4 -0.2 0 0.2 0.4
-0.0005

-0.0004

-0.0003

-0.0002

Fig. 9. Three point convergence test of puncture data close to puncture.

J.D. Brown, L.L. Lowe / Journal of Computational Physics 209 (2005) 582–598 597
Acknowledgements

We thank the numerical relativity group at NASA Goddard Space Flight Center, and especially Dae-Il

Choi, for their help and support. We would also like to thank Kevin Olson and Peter MacNeice for their

help with Paramesh. This work was supported by NASA Space Sciences Grant ATP02-0043-0056. Com-

putations were carried out on the North Carolina State University IBM Blade Center Linux Cluster.
The Paramesh software used in this work was developed at NASA Goddard Space Flight Center under

the HPCC and ESTO/CT projects.
References

[1] M.W. Choptuik, Phys. Rev. Lett. 70 (1993) 9.
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